强直性脊柱炎关键基因的多芯片联合分析(开放获取)
作者:
作者单位:

中国人民解放军总医院第四医学中心骨科医学部运动医学科,北京 100048

作者简介:

甘露,硕士研究生,研究方向:运动医学,(电子信箱)ganluok@126.com

中图分类号:

R593.23


(Open Access) Bioinformatic analysis of crucial genes in ankylosing spondylitis across multiple microarrays
Author:
Affiliation:

Division of Sport Medicine, Department of Orthopedic Medicine, The Fourth Medical Center, PLAGeneral Hospital, Beijing 100048 , China

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [18]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    [目的] 分析基因表达综合(GEO) 数据库中的强直性脊柱炎(ankylosing spondylitis, AS) 及正常人的膝关节滑膜组织的RNA 测序结果,筛选出相关的差异表达基因(differentially expressed genes, DEGs),为AS 的诊疗提供新的生物学靶向策略。[方法] 从GEO 数据库下载GSE41038 和GSE39340 数据集,质控后筛选AS 的DEGs,并进行功能富集和通路分析。随后利用在线数据库(Search Tool for Retrieval of Interacting Genes, STRING) 构建已鉴定基因的蛋白-蛋白相互作用(protein-proteininteraction, PPI) 网络,并通过Cytoscape 软件筛选出连接度最高的基因,评估关键基因对AS 的诊断效能。[结果] 在AS 患者和正常人之间共鉴定出433 个DEGs,其中276 个上调,157 个下调,GO 分析显示这些DEGs 主要参与T 细胞激活的正向调控、细胞外基质结构成分;KEGG 富集结果主要与类NF-κB 信号通路、TNF 信号通路结合等功能相关;运用STRING 数据库构建PPI网络并筛选出10 个网络中的核心基因:CASP3、CD36、CXCR4、EGFR、FGF10、IL-1β、MMP1、MMP3、SELL、TLR2。[结论] 采用生物信息学方法分析AS 的潜在机制,并筛选出10 个重要分子,可能是AS 潜在的关键基因和生物学标志物。

    Abstract:

    [Objective] To utilize bioinformatics methods to screen for differentially expressed genes (DEGs) associated with ankylosingspondylitis (AS) in the Gene Expression Omnibus database (GEO), aiming to provide new biological targeting strategies for the clinical diag-nosis and treatment of AS. [Methods] Datasets GSE41038 and GSE39340 were downloaded from the GEO database. After data processing,DEGs related to AS were selected. Functional enrichment and pathway analyses were then performed on these DEGs. Subsequently, the pro-tein-protein interaction (PPI) network of the identified genes was constructed using the online database (Search Tool for Retrieval of Interact-ing Genes, STRING) and visualized using Cytoscape software. [Results] A total of 433 DEGs were identified between AS patients andhealthy individuals, with 276 upregulated and 157 downregulated. GO analysis revealed that these DEGs were mainly involved in positiveregulation of T cell activation and collagen-containing extracellular matrix. KEGG enrichment results were primarily associated with NFkappaB signaling pathway and TNF signaling pathway. Using the STRING database, a protein interaction network was constructed, with Cy-toscape identified the top 10 genes with the highest connectivity, including CASP3, CD36, CXCR4, EGFR, FGF10, IL-1β, MMP1, MMP3,SELL and TLR2. [Conclusion] In this study, the potential mechanism of AS was analyzed by bioinformatics method, and 10 important mole-cules were screened, which may be the potential key genes and biological markers of AS.

    参考文献
    [1] Braun J,Sieper J.Ankylosing spondylitis [J].Lancet,2007,369(9570):1379-1390.DOI:10.1016/S0140-6736(07)60635-7.
    [2] Zhu W,He X,Cheng K,et al.Ankylosing spondylitis:etiology,pathogenesis,and treatments [J].Bone Res,2019,7:22.DOI:10.1038/s41413-019-0057-8.
    [3] Exarchou S,Lie E,Lindstrom U,et al.Mortality in ankylosingspondylitis:results from a nationwide population-based study [J].Ann Rheum Dis,2016,75(8):1466-1472.DOI:10.1136/annrheumdis-2015-207688.
    [4] 张恒维,刘晓伟,段康颖,等.1,25 二羟基维生素D3对强直性脊柱炎巨噬细胞极化的作用[J].中国矫形外科杂志,2022,30(15):1395-1400.DOI:10.3977/j.issn.1005-8478.2022.15.11.Zhang HW,Liu XW,DuanKY,et al.Role of 1,25-dihydroxy vitamin D3 on the polarization of macrophages in ankylosing spondylitis [J].Orthopedic Journal of China,2022,30(15):1395-1400.DOI:10.3977/j.issn.1005-8478.2022.15.11.
    [5] Brown MA,Kenna T,Wordsworth BP.Genetics of ankylosing spondylitis--insights into pathogenesis [J].Nat Rev Rheumatol,2016,12(2):81-91.DOI:10.1038/nrrheum.2015.133.
    [6] 熊春翔,卫小春,尹东,等.强直性脊柱炎早发髋关节强直相关影响因素的研究[J].中国矫形外科杂志,2018,26(9):798-801.DOI:10.3977/j.issn.1005-8478.2018.09.06.Xiong CX,Wei XC,Yin D,et al.The factors related to prematurehip ankylosis in ankylosing spondylitis [J].Orthopedic Journal ofChina,2018,26(9):798-801.DOI:10.3977/j.issn.1005-8478.2018.09.06.
    [7] Xiong Y,Cai M,Xu Y,et al.Joint together:The etiology and pathogenesis of ankylosing spondylitis [J].Front Immunol,2022,13:996103.DOI:10.3389/fimmu.2022.996103.
    [8] Li D,Cao R,Dong W,et al.Identification of potential biomarkersfor ankylosing spondylitis based on bioinformatics analysis [J].BMC Musculoskelet Disord,2023,24(1):413.DOI:10.1186/s12891-023-06550-3.
    [9] Ranganathan V,Gracey E,Brown MA,et al.Pathogenesis of ankylosing spondylitis-recent advances and future directions [J].NatRev Rheumatol,2017,13(6):359-367.DOI:10.1038/nrrheum.2017.56.
    [10] Tavasolian F,Lively S,Pastrello C,et al.Proteomic and genomicprofiling of plasma exosomes from patients with ankylosing spondylitis [J].Ann Rheum Dis,2023,82(11):1429-1443.DOI:10.1136/ard-2022-223791.
    [11] Dopazo J.Bioinformatics and cancer:an essential alliance [J].Clin Transl Oncol,2006,8(6):409-415.DOI:10.1007/s12094-006-0194-6.
    [12] Kumar C,Mann M.Bioinformatics analysis of mass spectrometrybasedproteomics data sets [J].FEBS Lett,2009,583(11):1703-1712.DOI:10.1016/j.febslet.2009.03.035.
    [13] Ritchie ME,Phipson B,Wu D,et al.limma powers differential expression analyses for RNA-sequencing and microarray studies [J].Nucleic Acids Res,2015,43(7):e47.DOI:10.1093/nar/gkv007.
    [14] Jo L,Kajala K.ggPlantmap:an open-source R package for the creation of informative and quantitative ggplot maps derived fromplant images [J].J Exp Bot,2024,2024:erae043.DOI:10.1093/jxb/erae043.
    [15] Wu T,Hu E,Xu S,et al.cluster Profiler 4.0:A universal enrichment tool for interpreting omics data [J].Innovation(Camb),2021,2(3):100141.DOI:10.1016/j.xinn.2021.100141.
    [16] Wang H,Jin H,Liu Z,et al.Screeni?浧愠瑡牮楤砠?浤敥瑮慴扩潦汩楣瑡整獩?慮爠敯?愠獫獥潹捣楨慲瑯敭摡?睩楮琠桲?捧桵慬湡杴敯獲?楢湩??湡歲祫汥潲獳椠湦杯?匠灡潮湫摹祬汯楳瑩楮獧??楰獯敮慤獹敬??捩瑳椠癡楮瑤礠?卲捵潧牰敲?慤湩摣??副??楥湶晩汤慥浮浣慥琠楦潲湯?猠换潩牯敩獮?楯湲?灡慴瑩楣敳渠瑡獮?睬楹瑳桩?愠硛楊慝氮?獍灃漠湍摵祳汣潵慬牯瑳桫牥楬瑥楴猠?摩畳牯楲湤本′吰串??椲渴栨椱戩椺琳漸爹?瑄桏敉爺愱瀰礮嬱?崸??牳琱栲爸椹琱椭猰′刳攭猰?吴根攰爭?金????㈠??????????伬??????????猠??づ???ぬ金休?ば????????扥爠??孳??嵳??敲湩杳?堠?婯桤略?匠?兯楲慡潮???敯瑳?慮汧??塰?????灩牴潩浳漺瑢敡獳??ㄠ?浮愠捩牮潴灥桧慲条整?灤漠汢慩牯楩穮慦瑯楲潭湡?慩湣搠?潮獡瑬敹潳捩汳慡獮瑤?摩楤晥普整物敦湩瑣楡慴瑩楯潮渠?瑦栠牰潯畴来桮?乩??欠慢灩灯慭??獫楥杲湳愠汭楯湳杴?灲慥瑬桡睴慥祤?楴湯?慩湭歭祵汮潩獴楹湛杊?献灍潥湤摩祡汴楯瑲楳猠?楮湦?癡業瑭爬漲‰嬲?崬??′吳爺愳渲猲氰′?攵搮??ぉ呼??金??????????伳??????????猾ㄠ?????ラ???す????????戧爊??宨劳?嵱?姠愠湛杊????盫?儖?坂旗椬′儰?攱琬′愹氨?吴丩??愲永瀲栭愱′椸渵栮楄扏楉琺漱爰?琳根攷爷愯灪礮?捳慳湮?椱洰瀰爵漭瘸攴?琸栮攲‰椲洱洮由渴攮‰椸洮扈慡汮愠湓捄攬?潵映??????呔?捒敩汳汫猠?慡湣摴?湲敳朠慲瑥楬癡整?牤攠杴畯氠慴瑨潯牲祡?捯敬汵汭獢?扲甠瑦?湡潣瑴??????呮?捡敮汫汹獬?楳湩?慧渠歳祰汯潮獤楹湬杩?獩灳漠湛摊祝氮楏瑲楴獨?孰?嵤??爠瑊桯牵楲瑮楡獬?副敦猠?周桩敮牡?有?有??有代?????????伭??????????猰??????な金ど?び?金㈱?????戴爷??嬲日?崱?圱漴漮搰???呢乲??慛?瀹潝琠敇湡瑲楲慩汤?琭桍敥牳慡瀠敊甬瑂楲捯?瑮愠牍杁攮瑔?晣潥牬???卥?孥?嵴?乩慲瑥?剰敲癯书敩畬物潮汧??の?㈠????????????传??ㄠぷ??っ???獌????祝?っ???づび????穹??扳物??嬠??嵯??潹湬湩整瑩????慝搮楃????穒慨捥???整瑯?愠汒??猬猲漰挲椲愬琲椴漨渱′戩攺琳眹攸攭渴?琰栮敄??????昱愰洰椷氯祳?朱改渲收?挰氲甲猭琰攱爰?愰渭搶?猼灢潲渾搠祛氲漰慝爠琠栏犉椬瑎楿猬?嬇?崬??渺滴?刊棱斎痸浳??楩玄??グ??????????????????伬??ㄨ???????愲渴渷爮桄敏畉洺搱椰献?代????金どび?????戰爵??嬴祝?崮′?爱改攮搰洳愮渱‰????楮畧?兘???敩氠????攠瑃?愬汥???噬???杲灲??ぴ?捲桥敳浥潡歲楣湨攠?牮攠换敩灯瑭潡牲?浥敲摳椠慯瑦敡摮?獹楬杯湳慩汮楧渠杳?楯湮?桹畬浩慴湩?洠慛捊牝漮灏桲慴杨敯獰?孤?嵣??浯浵畲湮潡汬删敯獦?至とど??水??㈱????㈨?ㄩ?有????伴???く???????刷?土??????金????戭爸??嬸??崰??攮‰???椰????愾漠???敝琠?慨汥??渠桙椬扃楡瑩椠潂測?潥普??堬?剴??楬渮桉楤扥楮瑴獩?瑩档敡?灩牯潮氠楯晦攠物慭瑭極潮湥?慲湥摬?潴獥瑤散潥杬敬湳椠捡?灤漠瑣敲湵瑣楩慡汬?潧晥?晥楳戠物潮戠汴慨獥琠獰?晲物潰浨?慲湡歬礠汢潬獯楯湤朠?獦瀠潡湮摫祹汬楯瑳楩獮?瘠楳慰?瑮桤敹?坩湴瑩?戠敢瑹愠?据慴瑥敧湲楡湴?灤愠瑢桩睯慩祮?孯?嵭??潩汣??敡摮?剬敹灳?????????????有????代????伱???い????日?洷洷爱?土ば?????????戵爮?br> [22] Klavdianou K,Tsiami S,Baraliakos X.New developments in ankylosing spondylitis-status in 2021 [J].Rheumatology(Oxford),2021,60(Suppl 6):i29-i37.DOI:10.1093/rheumatology/keab523.
    [23] Port H,Holm NS,Frederiksen P,et al.Extracellular matrix turnover biomarkers reflect pharmacodynamic effects and treatment response of adalimumab in patients with axial spondyloarthritis-results from two randomized controlled trials [J].Arthritis Res Ther,2023,25(1):157.DOI:10.1186/s13075-023-03132-5.
    [24] Holm NS,Sun S,Bay-Jensen AC,et al.Levels of extracellular?????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????
    引证文献
    Comments
    Comments
    分享到微博
    Submit
引用本文

甘露,李中耀,吴毅东,等. 强直性脊柱炎关键基因的多芯片联合分析(开放获取)[J]. 中国矫形外科杂志, 2024, 32 (12): 1131-1136. DOI:10.20184/j. cnki. Issn1005-8478.11022A.
GAN Lu, LI Zhong- yao, WUYi-dong, et al. (Open Access) Bioinformatic analysis of crucial genes in ankylosing spondylitis across multiple microarrays[J]. Orthopedic Journal of China , 2024, 32 (12): 1131-1136. DOI:10.20184/j. cnki. Issn1005-8478.11022A.

复制
文章指标
  • 点击次数:115
  • 下载次数: 1911
  • 引用次数: 0
历史
  • 收稿日期:January 06,2024
  • 最后修改日期:April 26,2024
  • 在线发布日期: June 24,2024